Выполнил студент группы 10-ОЗИ:
Попинако А.В.
Физические принципы функционирования устройств хранения информации на оптических носителях
Несмотря на постоянное увеличение емкости стационарных жестких дисков, существует потребность в компактном и мобильном носителе информации. На сегодняшний день в этой области лидируют CD и DVD. Фактически любую информацию — музыку, софт, фильмы, энциклопедии или клипарты — можно купить на этих носителях.
Первый представитель этой технологии — LD (Laser Disc), разработанный еще в 1969 году. Эти диски предназначались прежде всего для домашних кинотеатров, но, несмотря на ряд преимуществ перед видеокассетами VHS и Betamax, широкого распространения они не получили. Следующий представитель оптических носителей оказался куда более удачным. Это был всем известный компакт-диск (CD, Compact Disc). Он был разработан в 1979 году и первоначально предназначался для записи высококачественной музыки. Но в 1987 году стараниями Microsoft и Apple компакт-диски стали использоваться и в персональных компьютерах. Так пользователи получили в свое распоряжение компактный и надежный носитель информации высокой емкости: стандартный объем в 650 Мб для конца 80-х казался неисчерпаемым.
За последние 20 лет CD практически не изменился. Носитель представляет собой своеобразный «бутерброд», состоящий из трех слоев. Основа компакт-диска — поликарбонатная подложка, на которую распыляется тончайший слой металла (алюминий, серебро, золото). На этот слой, собственно, и производится запись. Металлическое напыление покрывается слоем защитного лака, и уже на него наносятся всякие картинки, логотипы, названия и другие опознавательные знаки.
Принцип работы оптических дисков основан на изменении интенсивности отраженного света. На обычном CD вся информация записана на одной спиральной дорожке, представляющей собой последовательность углублений, питов (от англ. pit — «впадина»). Между углублениями расположены участки с гладким отражающим слоем, лэндов (от англ. land — «земля, поверхность»). Данные считываются при помощи лазерного луча, сфокусированного в световое пятно диаметром около 1,2 мкм. Если лазер попадает на лэнд, специальный фотодиод регистрирует отраженный луч и фиксирует логическую единицу. Если же лазер попадает в пит, луч рассеивается, интенсивность отраженного света уменьшается и устройство фиксирует логический ноль.
Первые лазерные диски были предназначены только для чтения. Они изготавливались строго в заводских условиях и питы на них наносились при помощи штамповки непосредственно на голую поликарбонатную подложку, после чего диски покрывали отражающим слоем и защитным лаком.
Но уже в 1988-м появилась технология CD-R (Compact Disc-Recordable). Диски, выполненные по этой технологии, можно было использовать для однократной записи информации при помощи
специального пишущего привода. Для этого между поликарбонатом и отражающим слоем был размещен еще один слой из тонкого органического красителя. При нагревании до определенной температуры краситель разрушался и темнел. В процессе записи привод, управляя мощностью лазера, наносил на диск последовательность темных точек, которые при считывании воспринимались как питы.
Еще через десять лет, в 1997 году, был создан CD-RW (Compact Disc-Rewritable) — перезаписываемый компакт-диск. В отличие от CD-R, здесь в качестве записывающего слоя использовался специальный сплав, способный под воздействием лазерного луча переходить из кристаллического состояния в аморфное и обратно.
LD
Годы жизни: 1972–2000
Объем памяти: 680 Мб
+ Первый коммерческий образец оптических носителей
данных
– Использовался только в качестве носителя видео и аудио и по размерам не уступал виниловым дискам, что создавало определенные неудобства
CD
Годы жизни: 1982 — по сей день
Объем памяти: 700 Мб
+ Компактность, относительная надежность, дешевизна
– Низкая, по современным меркам, емкость, морально устаревшая технология
БОЛВАНКИ НОВОГО ПОКОЛЕНИЯ
В середине 90-х, когда эпоха CD была в самом разгаре, прозорливые производители уже работали над усовершенствованием оптических дисков. В 1996 году в продаже появились первые DVD (Digital Versatile Disc) емкостью 4,7 Гб. Новые носители информации эксплуатировали тот же самый принцип, что и CD, только для считывания использовался лазер с меньшей длиной волны — 650 нм против 780 нм у компакт-дисков. Это, казалось бы, нехитрое изменение позволило уменьшить размер светового пятна, а, следовательно, и минимальный размер ячейки информации. Поэтому DVD-диск смог вместить в 6,5 раз больше полезной информации, чем CD.
В 1997 году в продажу поступили и первые записываемые DVD-R, тоже эксплуатирующие технологию, проверенную на CD-R. Впрочем, до широких масс эти новшества дошли только через несколько лет, поскольку первый пишущий привод для DVD-R стоил порядка $17 000, а болванки — по $50 за штуку.
Сегодня DVD стал неотъемлемой частью компьютерной индустрии. Но и ему жить осталось недолго. Стремительный прогресс в области высоких технологий и растущие потребности пользователей требуют новых, более емких носителей.
Первой ласточкой стали двуслойные DVD. В них информация записывается на двух разных уровнях, обычном нижнем и полупрозрачном верхнем. Изменяя фокусировку лазера, можно считывать данные с обоих слоев поочередно. Такие DVD вмещают 8,5 Гб информации. Затем появились двуслойные двусторонние DVD. У этих дисков обе стороны рабочие и содержат по два слоя информации. Вместимость носителей выросла до 17 Гб.
На этом показателе был достигнут потолок DVD-технологии. Дальнейшее увеличение количества слоев представляется излишне сложной проблемой, толщина диска все же ограничена, так что впихнуть туда что-то очень трудно. Кроме того, даже при двуслойной системе было множество нареканий на качество считывания информации, а уж сколько ошибок могут выдать гипотетические трехслойные DVD — и подумать страшно.
Производители решили (временно, конечно) проблему увеличения емкости путем создания нового формата. Вернее, сразу двух: HD-DVD и Blu-ray. Обе технологии используют синий лазер с длиной волны в 405 нм. Как мы уже сказали, уменьшение длины волны позволяет также уменьшить минимальный размер ячейки памяти и, следовательно, увеличить плотность записи. Появление сразу двух новых типов дисков спровоцировало так называемую «войну форматов», длившуюся около двух лет. В конечном итоге, несмотря на определенные преимущества, HD-DVD этот бой проиграл.
По мнению многих экспертов, главную роль в этом сыграла исключительно мощная поддержка американскими киностудиями формата Blu-ray.
«Голубой луч» сейчас является единственным оптическим носителем информации высокой емкости, который можно найти в продаже. Диски 23, 25, 27 и 33 Гб. Существуют и двуслойные образцы объемом 46, 50, 54 и 66 Гб.
DVD Годы жизни: 1996 — по сей день
Объем памяти: до 17,1 Гб
+ Самый популярный носитель информации:
подавляющее большинство музыки, фильмов
и разнообразного софта распространяется именно на DVD
– Морально устаревшая технология
HD-DVD
Годы жизни: 2004–2008
Объем памяти: до 30 Гб
+ Высокая емкость плюс относительно невысокая цена за
счет более дешевого производства
– Отсутствие поддержки американской киноиндустрии.
Blu-ray
Годы жизни: 2006 — по сей день
Объем памяти: до 66 Гб
+ Высокая емкость носителей, поддержка голливудских «монстров»
– Большая стоимость приводов и носителей, поскольку для производства требуется принципиально новое оборудование
ГОНКА ГИГАБАЙТОВ
Рынок дисковых накопителей — весьма лакомый кусочек. Поэтому уже в ближайшее время следует ожидать если не смещения Blu-ray с лидирующих позиций, то новой войны форматов.
Существует целый ряд технологий, претендующих на кошельки пользователей. Например, HD VMD (High Density — Versatile Multilayer Disc). Этот формат был представлен в 2006 году малоизвестной британской компанией New Medium Enterprises. Тут производитель пошел по пути увеличения количества записываемых слоев в одном диске — их аж 20. Благодаря этому максимальная емкость HD VMD на сегодняшний день составляет 100 Гб. В целом маловероятно чтобы небольшая New Medium Enterprises сумеет всерьез потеснить мультимедиагигантов. Но благодаря заявленной низкой стоимости дисков и приводов к ним (за счет использования более дешевого красного лазера с длиной волны 650 нм) теоретически британцы могут рассчитывать на определенную популярность своей продукции. Если она, конечно, вообще доберется до рынка.
Еще один претендент — формат Ultra Density Optical (UDO). Разработка началась еще в июне 2000 года, и сейчас это уже вполне готовое устройство, доступное на рынке. Здесь была сделана ставка на увеличении точности фокусировки луча. При длине волны лазера в 650 нм диск UDO вмещает от 30 до 60 Гб информации. Существуют также носители, использующие синий лазер (405 нм), и в этом случае максимальный объем UDO достигает 500 Гб. Но за все нужно платить: увеличение точности лазера стало причиной серьезного удорожания приводов. Сами носители выпускаются в виде 5,35-дюймового картриджа с диском внутри (для защиты от внешних воздействий) и продаются по цене в $60-70. На сегодняшний день технология UDO используется в основном крупными компаниями для архивации информации и создания резервных копий данных.
HD VMD (High Density — Versatile Multilayer Disc)
Годы жизни: 2006 — недалекое будущее
Объем памяти: до 100 Гб
+ Высокая емкость, относительно низкая стоимость
– Отсутствие поддержки крупных игроков рынка, что наверняка станет причиной смерти формата
UDO (Ultra Density Optical)
Годы жизни: 2000 — по сей день
Объем памяти: до 120 Гб
+ Хорошая емкость
– Высокая стоимость приводов и носителей, ориентация на узкоспециализированный рынок устройств архивации данных
ГОЛОГРАФИЯ
Несмотря на обилие форматов оптических дисков, уже существует технология, которая в будущем наверняка оставит за бортом всех конкурентов. Речь идет о голографической записи. Преимущества этой технологии и ее потенциал огромны. Во-первых, если в обычных оптических дисках информация записывается на слой при помощи отдельных ячеек информации, то в голографической памяти данные распределяются по всему объему носителя, причем за один такт может записываться несколько миллионов ячеек, благодаря чему скорость записи и чтения резко увеличивается. Во-вторых, за счет распределения информации в трех измерениях максимальная емкость носителя достигает действительно заоблачных высот.
Работы в этом направлении начались около десяти лет назад, и на сегодняшний день существует вполне внятная технология, по которой на стандартных размеров диск можно записать 1,6 Тб информации. При этом скорость чтения составляет 120 Мб/с.
Принцип действия голографической записи реализован следующим образом. Лазерный луч при помощи полупрозрачного зеркала разделяется на два потока, имеющих одинаковую длину волны и поляризацию. Пространственный световой модулятор, представляющий собой плоский трафарет, преобразует цифровую информацию в последовательность прозрачных и непрозрачных ячеек, которые соответствуют логическим единице и нулю. Сигнальный луч, пройдя через эту решетку и получив порцию информации, проецируется на носитель. Второй луч — опорный — под углом падает в ту же область диска. При этом в точках, где опорный и сигнальный лучи пересекаются, происходит сложение амплитуд волн (интерференция), в результате чего лучи совместными усилиями прожигают светочувствительный слой, фиксируя информацию на носителе. Таким образом за один такт записывается сразу вся информация, которую может осилить разрешающая способность светового модулятора. На сегодняшний день это порядка миллиона бит за раз.
Считывание данных происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.
Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Благодаря этому можно эффективно использовать весь объем носителя. Практический потолок емкости голографических дисков точно неизвестен, но производители утверждают, что уже достигнутый ими потолок в 3,6 Тб — далеко не предел.
Голографические диски
Годы жизни: недалекое будущее
Объем памяти: до 1 Тб
+ Очень, ну очень высокая емкость при
сохранении компактных размеров носителя
– Время покажет