Реферат

на тему

«Лазерные системы передачи данных»







Введение

Лазерные системы передачи данных предназначены для организации односторонней и дуплексной связи между объектами, находящимися в пределах прямой видимости.
Free Space Optics - Технология FSO, в которую входит - атмосферная оптическая связь, (АОЛС) и беспроводный оптический канал связи (БОКС) – это способ беспроводной передачи информации в коротковолновой части электромагнитного спектра. В ее основе лежит принцип передачи цифрового сигнала через атмосферу (или космическое пространство) путем модуляции излучения (инфракрасном или видимом) и его последующим детектированием оптическим фотоприемным устройством.
Современное состояние беспроводной оптической связи позволяет создавать надежные каналы связи на расстояниях от 100 до 1500-2000 м в условиях атмосферы и до 100 000 км в открытом космосе, например для связи между спутниками. Являясь альтернативным решением по отношению к оптоволокну, атмосферные оптические линии передачи данных (АОЛП) позволяют сверхоперативно сформировать беспроводный оптический канал связи.




1. Атмосферная оптическая линия связи

Бурное развитие телекоммуникационного рынка требует высокоскоростных линий передачи данных. Однако прокладка оптического волокна подразумевает солидные инвестиции, да и в принципе не всегда возможна.
Естественной альтернативой в этом случае являются беспроводные линии связи СВЧ-диапазона, но проблема оперативного получения частотных разрешений резко ограничивает перспективы их применения, особенно в крупных городах.
Другим способом беспроводной связи являются оптические линии связи (лазерная или оптическая связь), использующие топологию «точка–точка» (point-to-point) или в режиме многоточечного доступа (point-to-multipoint). Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применявшуюся в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи. Первая атмосферная линии связи (АЛС) в Москве появилась в конце 60-х годов: была пущена телефонная линия между зданием МГУ на Ленинских горах и Зубовской площадью протяженностью более 5 км. Качество передаваемого сигнала полностью соответствовало нормам. В те же годы опыты с АЛС проводились в Ленинграде, Горьком, Тбилиси и Ереване. В целом, испытания были успешными, но на тот момент специалисты посчитали, что плохие погодные условия делают лазерную связь ненадёжной, и она была признана неперспективной.
Использование сигналов с непрерывной (аналоговой) модуляцией, применявшейся в те годы, приводило к ненормированному затуханию оптического сигнала из-за влияния атмосферы.
Современное широкое распространение АЛС во многих странах мира началось в 1998 году, когда были созданы недорогие полупроводниковые лазеры мощностью в 100 мВт и более, а применение цифровой обработки сигнала позволило избежать ненормированного затухания сигнала и выполнять повторную передачу пакета информации при обнаружении ошибки.
В это же время возникла потребность в лазерной связи, так как стали стремительно развиваться информационные технологии. Резко увеличивается число абонентов, требующих предоставления таких телекоммуникационных услуг, как Интернет, IP-телефония, кабельное телевидение с большим числом каналов, компьютерные сети и т. д. В результате возникла проблема "последней мили" (подключение широкополосного канала связи к конечному пользователю). Прокладка новых кабельных сетей требует крупных капиталовложений, а в ряде случаев, особенно в условиях плотной городской застройки, очень трудна или даже невозможна.
Оптимальным решением проблемы последнего участка является использование беспроводных линий передачи.
Преимущества беспроводных линий связи очевидны: это экономичность (не требуется рыть траншеи для укладки кабеля и арендовать землю); низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи; быстрое развертывание и изменение конфигурации сети; легкое преодоление препятствий - железных дорог, рек, гор и т.д.
Беспроводная связь в радиодиапазоне ограничена перегруженностью и дефицитом частотного диапазона, недостаточной скрытностью, подверженностью помехам, в том числе и преднамеренным, и с соседних каналов, повышенным энергопотреблением. Кроме того, для радиосвязи необходимо длительное согласование и регистрация с назначением частот органами Госсвязьнадзора РФ, арендная плата за канал, обязательная сертификация радиооборудования Государственной комиссией по радиочастотам. Применение лазерных средств снимает этот сложный вопрос. Это обусловлено тем, что, во-первых, частота излучения лазерных систем связи выходит за пределы диапазона, в котором необходимо согласование (в России), во-вторых, отсутствием практических возможностей их обнаружения и идентификации как средств информационного обмена.
Основные свойства лазерных систем:
• практически абсолютная защищенность канала от несанкционированного доступа и, как следствие, высокий уровень помехоустойчивости и помехозащищенности за счет возможности концентрации всей энергии сигнала в углах от долей угловых минут (в лазерных космических системах связи) до десятков градусов (полнодоступные системы связи в помещениях);
• высокие информационные емкости каналов (до десятков Гбит/с)
• отсутствуют задержки при передаче информации (ping<1ms) как у радиолиний
• отсутствие ярко выраженных демаскирующих признаков (в основном, побочных электромагнитных излучений) и возможность дополнительной маскировки, позволяющей скрыть не только передаваемую информацию, но и сам факт информационного обмена.
Кроме того, многие специалисты отмечают биологическую безопасность этих систем, так как средняя плотность мощности излучения в лазерных системах различного назначения примерно в 3 - 6 раз меньше облученности, создаваемой Солнцем, а также простоту принципов их построения и функционирования, относительно малую стоимость по сравнению с традиционными средствами передачи информации аналогичного назначения.
Конструкция:
Лазерная линия связи состоит из двух идентичных станций, устанавливаемых напротив друг друга в пределах прямой видимости (рис. 1).

Рис. 1. Конструкция АЛС


Построение всех станций АЛС практически одинаково: интерфейсный модуль, модулятор, лазер, оптическая система передатчика, оптическая система приемника, демодулятор и интерфейсный модуль приемника. Передатчик представляет собой излучатель на основе импульсного полупроводникового лазерного диода (иногда обычного светодиода). Приемник в большинстве случаев имеет в своей основе скоростной pin фотодиод или лавинный фотодиод.
Передаваемый поток данных от аппаратуры пользователя поступает на интерфейсный модуль и затем на модулятор излучателя. Затем сигнал преобразуется высокоэффективным инжекционным лазером в оптическое излучение ИК-диапазона, оптикой коллимируется в узкий пучок и передается через атмосферу к приемнику. На противоположном пункте принимаемое оптическое излучение фокусируется приемным объективом на площадку высокочувствительного быстродействующего фотоприемника (лавинные или pin-фотодиоды), где детектируется. После дальнейшего усиления и обработки сигнал поступает на интерфейс приемника, а оттуда на аппаратуру пользователя. Аналогичным образом в дуплексном режиме одновременно и независимо идет встречный поток данных.
Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней мили".
Рассмотрим влияние атмосферы на качество беспроводной инфракрасной связи. Распространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. По чисто качественным признакам указанные явления можно разделить на три основные группы:
1. поглощение (непосредственное взаимодействием луча фотонов с молекулами атмосферы);
2. рассеяние на аэрозолях (пыль, дождь, снег, туман);
3. флуктуации излучения на турбулентностях атмосферы.

Связь по лазерному лучу через атмосферу в настоящее время стала реальной. Она обеспечивает передачу большого количества информации с высокой надежностью на расстояниях до 5 км и решает многие труднопоставимые задачи. Поэтому в последнее время возрастает интерес к этому виду связи.



¹Флуктуации (от лат. fluctuatio — колебание), случайные отклонения физических величин от их средних значений.
²Интернет-источник: http://laseritc.ru/?id=93




2. Беспроводной оптический канал связи

Беспроводной оптический канал связи (БОКС) – устройство, осуществляющее передачу данных через атмосферу. Оно предназначено для создания канала передачи данных стандарта Ethernet. БОКС состоит из двух одинаковых приемопередатчиков (оптических труб), устанавливаемых на обеих сторонах канала связи. Каждый блок состоит из приемопередающего модуля, козырька, интерфейсного кабеля (длиной 5 м), системы наведения, кронштейна, блока питания и блока доступа.
Приемопередающий модуль включает передатчик остронаправленного оптического излучения ИК-диапазона (состоящий из инфракрасного полупроводникового светодиода) и приемник - высокочувствительный светодиод. Светодиоды работают на длине волны 0,87 мкм. Несколько примеров отечественных производителей систем БОКС и их характеристики описаны в таблице 1.
Таблица 1. Устройства для создания оптических каналов связи

Название устройстваПроизводительСтандарты сигналовДистанцияТип излучателяЦена, долл.
ЛАЛ2+ИТЦ, НовосибирскG.703, IEEE802.3от 1000 м до 5000 м Лазер7030 9230
МОСТ 100/500Рязанский приборостроительный заводG.703, IEEE802.3, IEEE802.3u1200-1400 мЛазер4890
БОКС-10М"Катарсис"IEEE802.3500 мСветодиод2450
БОКС-10МПД"Катарсис"G.703, IEEE802.31000 мСветодиод4344



На рисунке 2 наглядно показан БОКС-10М.

Рис. 2. БОКС-10М

Принцип работы:
Рассмотрим процесс передачи данных с использованием оптического канала (рис. 3). Электрический сигнал с порта Ethernet поступает по интерфейсному кабелю на передатчик, где светодиод преобразует его в ИК-излучение, которое проходит через светоделительное устройство и фокусируется объективом в узконаправленный луч. Пройдя через атмосферу, часть излучения попадает на объектив другого приемопередатчика, фокусируется и светоделительным устройством подается на приемник. Приемник преобразует ИК-излучение в электрический сигнал, который по интерфейсному кабелю поступает на порт Ethernet. Источник питания обеспечивает работу передатчика, приемника, блока индикации и системы предотвращения запотевания/обледенения объектива.

Рис. 3. Общий принцип работы устройства семейства БОКС.


Надежность передачи достигается в первую очередь за счет правильного наведения и энергетического запаса. При правильном наведении энергетический запас системы должен быть четырехкратным для моделей БОКС-10МЛ и БОКС-10М (иными словами, закрывая 4/5 линзы объектива, мы имеем надежный 100%-ный канал при хорошей погоде). Модель БОКС-10МПД имеет 16-кратный энергетический запас. В этом случае доступность канала в течение года будет составлять 99,7-99,9%. Чем выше энергетический запас системы, тем выше надежность канала, которая в идеальном случае достигает 99,99%.
Кроме того, надежная работа системы обусловлена методом доступа к среде передачи CSMA/CD, используемым в сетях Ethernet. Любая коллизия - ухудшение погодных условий или появление кратковременной преграды приводит к повторной передаче пакета на физическом уровне, но даже если случится так, что коллизия не будет услышана (это возможно, например, в моделях БОКС-10МЛ и БОКС-10М из-за того, что время переключения с приема на передачу, конечно, и равно 4 мкс) и пакет будет потерян, то протоколы более высокого уровня, работающие с гарантией доставки, отследят это происшествие, и запрос будет повторен.
Соединение через атмосферу никогда не дает 100%-ной гарантии наличия связи, поэтому возможно, что, например, в плохих погодных условиях (сильный снегопад, очень плотный туман, мощный ливень и т.д.) канал не будет работать. Но в этом случае прекращение связи будет временным, и после улучшения условий связь сама восстановится. Чтобы уменьшить вероятность потери связи по метеоусловиям, необходимо ставить модели с большей рабочей дистанцией, что повышает энергетику светового потока и, как следствие, надежность системы в целом.
Еще одно условие надежной и стабильной работы системы - совпадение центра геометрического пятна освещенности передатчика с центром объектива приемника. Ветровые нагрузки, а также механические и сезонные колебания опоры могут вывести систему из зоны пятна освещенности, в результате чего связь исчезнет. Вся конструкция систем и размер пятна освещенности от передатчика согласованы таким образом, чтобы вероятность потери связи из-за вышеперечисленных причин была сведена к минимуму. При наведении решается следующая геометрическая задача: из точки, полученной при грубом наведении, требуется переместить систему в геометрический центр пятна освещенности от светового потока излучателя, окончательно зафиксировав систему наведения в этом положении. С помощью стандартной системы наведения эта задача решается за 35 итераций.
Монтаж:
Приемопередатчики можно устанавливать на поверхности крыш или стен. БОКС монтируется на металлической опоре, которая позволяет регулировать угол наклона по горизонтали и вертикали (рис. 4). Приемопередатчик подключается через специальный блок доступа, в качестве соединительных кабелей обычно используют витую пару категории 5 (UTP). Со стороны оптического канала блок доступа соединяется с приемопередатчиком интерфейсным кабелем, в качестве которого используется обычная витая пара, снабженная специальными разъемами. С другой стороны блок доступа соединяется с компьютером или сетевым устройством (маршрутизатором или коммутатором).
Блок доступа и блок питания приемопередатчика всегда устанавливают внутри помещения рядом друг с другом. Их можно крепить на стене или размещать в таких же стойках, какие используются для оборудования ЛВС.
Для надежной работы необходимо учесть следующие рекомендации:
• здания должны находиться в пределах прямой видимости (на всем пути луч не должен встречать непрозрачных препятствий);
• лучше, если устройство будет находиться как можно выше над землей и в труднодоступном месте;
• при установке системы следует избегать ориентации приемопередатчиков в направлении восток - запад (такое специфическое требование объясняется достаточно просто: солнечные лучи на восходе или закате могут на несколько минут перекрыть излучение, и передача прекратится);
• вблизи от места крепления не должно быть моторов, компрессоров и т.д., поскольку вибрация может привести к сдвигу трубы и разрыву соединения.

Рис. 4. Схема системы наведения


Типы соединений:
На рисунке 5 показаны возможные типы соединений БОКС.

Рис. 5. Типы соединений БОКС

В разных источниках встречается большое количество названий оборудования беспроводной передачи данных в инфракрасном диапазоне длин волн. За рубежом данный класс систем принято называть FSO – Free Space Optics, на постсоветском пространстве существует целый ряд обозначений систем беспроводной оптической связи. За основу следует принять аббревиатуру БОКС – беспроводной оптический канал связи, как отраженную в сертификате системы «Связь» (ССС).


³Интернет источник: http://www.bytemag.ru/articles/detail.php?ID=6562





Заключение


На сегодняшний день лазерные системы это один из лучших способов передачи данных как на короткие дистанции, так и на большие, и даже очень большие. Так например 2 октября 2012 года с Российского сегмента Международной космической станции впервые по лазерному каналу была передана широкополосная информация общим объемом 2,8 Гигабайт на наземный пункт со скоростью 125 Мбит/с.
Этот шаг открывает дорогу к широкому внедрению в космическую технику России лазерных линий связи, которые при меньших массогабаритных параметрах бортовой аппаратуры потенциально могут обеспечивать исключительно высокую скорость информационного потока (до десятков гигабит в секунду).














Список используемой литературы

  1. 1. Что такое атмосферные линии связи // http://laseritc.ru/?id=93

  1. 2. БОКС - устройства для создания беспроводных оптических каналов связи // http://www.bytemag.ru/articles/detail.php?ID=6562

  1. 3. Атмосферные оптические системы передачи компании PAV Data Systems // http://www.micromax.ru/about/faq/faq4.shtml#3

  1. 4. Новости федерального космического агентства // http://www.federalspace.ru/main.php?id=2&nid=19569
Яндекс.Метрика